Search results for "Laplace Transform Method"
showing 4 items of 4 documents
A fast BEM for the analysis of plates with bonded piezoelectric patches
2010
In this paper a fast boundary element method for the elastodynamic analysis of 3D structures with bonded piezoelectric patches is presented. The elastodynamic analysis is performed in the Laplace domain and the time history of the relevant quantities is obtained by inverse Laplace transform. The bonded patches are modelled using a semi-analytical state-space variational approach. The computational features of the technique, in terms of required storage memory and solution time, are improved by a fast solver based on the use of hierarchical matrices. The presented numerical results show the potential of the technique in the study of structural health monitoring (SHM) systems.
Fast Solution of 3D Elastodynamic Boundary Element Problems by Hierarchical Matrices
2009
In this paper a fast solver for three-dimensional elastodynamic BEM problems formulated in the Laplace transform domain is presented, implemented and tested. The technique is based on the use of hierarchical matrices for the representation of the collocation matrix for each value of the Laplace parameter of interest and uses a preconditioned GMRES for the solution of the algebraic system of equations. The preconditioner is built exploiting the hierarchical arithmetic and taking full advantage of the hierarchical format. An original strategy for speeding up the overall analysis is presented and tested. The reported numerical results demonstrate the effectiveness of the technique.
On the accuracy of the fast hierarchical DBEM for the analysis of static and dynamic crack problems
2010
In this paper the main features of a fast dual boundary element method based on the use of hierarchical matrices and iterative solvers are described and its effectiveness for fracture mechanics problems, both in the static and dynamic case, is demonstrated. The fast solver is built by representing the collocation matrix in hierarchical format and by using a preconditioned GMRES for the solution of the algebraic system. The preconditioner is computed in hierarchical format by LU decomposition of a coarse hierarchical representation of the collocation matrix. The method is applied to elastostatic problems and to elastodynamic cases represented in the Laplace transform domain. The application …
A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems
2010
In this work a fast solver for large-scale three-dimensional elastodynamic crack problems is presented, implemented, and tested. The dual boundary element method in the Laplace transform domain is used for the accurate dynamic analysis of cracked bodies. The fast solution procedure is based on the use of hierarchical matrices for the representation of the collocation matrix for each computed value of the Laplace parameter. An ACA (adaptive cross approximation) algorithm is used for the population of the low rank blocks and its performance at varying Laplace parameters is investigated. A preconditioned GMRES is used for the solution of the resulting algebraic system of equations. The precond…